surface voids - definition. What is surface voids
DICLIB.COM
أدوات لغة الذكاء الاصطناعي
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات بواسطة الذكاء الاصطناعي

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

DIMENSIONLESS QUANTITY RELATED TO POROSITY
Voids ratio

Surface finish         
  • How a profilometer works
  • 500px
  • Examples of various lay patterns
SMALL, LOCAL DEVIATIONS OF A SURFACE FROM A PERFECTLY FLAT IDEAL; DEFINED BY THE THREE CHARACTERISTICS OF LAY, SURFACE ROUGHNESS, AND WAVINESS
Surface texture symbol; Surface texture; Surface topography
Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness.. It comprises the small, local deviations of a surface from the perfectly flat ideal (a true plane).
Parametric surface         
  • 1= ''z'' = (''R'' + ''r'' cos ''v'') cos ''u''}}.
  • Parametric surface forming a [[trefoil knot]], equation details in the attached source code.
SURFACE IN THE EUCLIDEAN SPACE
Parametrized surface; Parametrised surface; Parametrized Surface; Surface parameterisation; Parametric object
A parametric surface is a surface in the Euclidean space \R^3 which is defined by a parametric equation with two parameters Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form.
Planetary surface         
  • surface]] of the [[Moon]], which consists of [[lunar regolith]] (photographed by [[Neil Armstrong]], July 1969).
  • Perseverance]] rover.
  • Perspective radar view of Titan's [[Bolsena Lacus]] (lower right) and other northern hemisphere hydrocarbon lakes
  • access-date=24 July 2015 }}</ref>
  • Full-sized image]])''
  • Sand dunes in the [[Namib Desert]] on Earth (top), compared with dunes in Belet on Titan
WHERE THE SOLID (OR LIQUID) MATERIAL OF THE OUTER CRUST ON CERTAIN TYPES OF ASTRONOMICAL OBJECTS CONTACTS THE ATMOSPHERE OR OUTER SPACE
Planet surface; Surface (astronomy); Surfacism; Surface chauvinism
A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including Earth), dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs).

ويكيبيديا

Void ratio

The void ratio of a mixture is the ratio of the volume of voids to volume of solids.

It is a dimensionless quantity in materials science, and is closely related to porosity as follows:

e = V V V S = V V V T V V = ϕ 1 ϕ {\displaystyle e={\frac {V_{V}}{V_{S}}}={\frac {V_{V}}{V_{T}-V_{V}}}={\frac {\phi }{1-\phi }}}

and

ϕ = V V V T = V V V S + V V = e 1 + e {\displaystyle \phi ={\frac {V_{V}}{V_{T}}}={\frac {V_{V}}{V_{S}+V_{V}}}={\frac {e}{1+e}}}

where e {\displaystyle e} is void ratio, ϕ {\displaystyle \phi } is porosity, VV is the volume of void-space (such as fluids), VS is the volume of solids, and VT is the total or bulk volume. This figure is relevant in composites, in mining (particular with regard to the properties of tailings), and in soil science. In geotechnical engineering, it is considered one of the state variables of soils and represented by the symbol e.

Note that in geotechnical engineering, the symbol ϕ {\displaystyle \phi } usually represents the angle of shearing resistance, a shear strength (soil) parameter. Because of this, the equation is usually rewritten using n {\displaystyle n} for porosity:

e = V V V S = V V V T V V = n 1 n {\displaystyle e={\frac {V_{V}}{V_{S}}}={\frac {V_{V}}{V_{T}-V_{V}}}={\frac {n}{1-n}}}

and

n = V V V T = V V V S + V V = e 1 + e {\displaystyle n={\frac {V_{V}}{V_{T}}}={\frac {V_{V}}{V_{S}+V_{V}}}={\frac {e}{1+e}}}

where e {\displaystyle e} is void ratio, n {\displaystyle n} is porosity, VV is the volume of void-space (air and water), VS is the volume of solids, and VT is the total or bulk volume.